Spectral self-interference microscopy for low-signal nanoscale axial imaging.

نویسندگان

  • Brynmor J Davis
  • Anna K Swan
  • M Selim Unlü
  • William C Karl
  • Bennett B Goldberg
  • John C Schotland
  • P Scott Carney
چکیده

A theoretical and numerical analysis of spectral self-interference microscopy (SSM) is presented with the goal of expanding the realm of SSM applications. In particular, this work is intended to enable SSM imaging in low-signal applications such as single-molecule studies. A comprehensive electromagnetic model for SSM is presented, allowing arbitrary forms of the excitation field, detection optics, and tensor sample response. An evanescently excited SSM system, analogous to total internal reflection microscopy, is proposed and investigated through Monte Carlo simulations. Nanometer-scale axial localization for single-emitter objects is demonstrated, even in low-signal environments. The capabilities of SSM in imaging more general objects are also considered--specifically, imaging arbitrary fluorophore distributions and two-emitter objects. A data-processing method is presented that makes SSM robust to noise and uncertainties in the detected spectral envelope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Multi - Channel Microscopy : Spectral Self - Interference , Multi - Detector Confocal and 4 Pi Systems

Fluorescence microscopy is an important and ubiquitous tool in biological imaging due to the high specificity with which fluorescent molecules can be attached to an organism and the subsequent nondestructive in-vivo imaging allowed. Focused-light microscopies allow three-dimensional fluorescence imaging but their resolution is restricted by diffraction. This effect is particularly limiting in t...

متن کامل

Three-dimensional Localization of Nano-emitters with Nanometer-level Precision

We show nanometer-level localization accuracy of a single quantum-dot in three dimensions by self-interference and diffraction-pattern analysis. We believe that this approach has the capacity to push optical microscopy to the molecular level. ©2009 Optical Society of America OCIS codes: (180.2520) Fluorescence microscopy; (260.3160) Interference; (100.6640) Superresolution The use of fluorescen...

متن کامل

Fluorescence Imaging with Nanometer Precision Using Spectral Self-interference Microscopy

Spectral Self-Interference Fluorescence Microscopy (SSFM) has been shown to allow nanometer-scale localization of fluorescent layers placed above a reflecting substrate. A MonteCarlo analysis is used to show how this high localization accuracy can still be expected at the low signal levels associated with single-molecule studies. Discrimination of fluorophores separated by a few tens of nanomet...

متن کامل

High resolution spectral self-interference fluorescence microscopy

We present a new method of fluorescence imaging, which yields nm-scale axial height determination and ~15 nm axial resolution. The method uses the unique spectral signature of the fluorescent emission intensity well above a reflecting surface to determine vertical position unambiguously. We have demonstrated axial height determination with nm sensitivity by resolving the height difference of fl...

متن کامل

4Pi spectral self-interference microscopy.

Spectral self-interference microscopy (SSM) relies on the balanced collection of light traveling two different paths from the sample to the detector, one direct and the other indirect from a reflecting substrate. The resulting spectral interference effects allow nanometer-scale axial localization of isolated emitters. To produce spectral fringes the difference between the two optical paths must...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 24 11  شماره 

صفحات  -

تاریخ انتشار 2007